Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Clin Microbiol Rev ; : e0000423, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551323

RESUMO

SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.

2.
Intern Med J ; 51 Suppl 7: 177-219, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34937139

RESUMO

Invasive fungal disease (IFD) due to moulds other than Aspergillus is a significant cause of mortality in patients with malignancies or post haemopoietic stem cell transplantation. The current guidelines focus on the diagnosis and management of the common non-Aspergillus moulds (NAM), such as Mucorales, Scedosporium species (spp.), Lomentospora prolificans and Fusarium spp. Rare but emerging NAM including Paecilomyces variotii, Purpureocillium lilacinum and Scopulariopsis spp. are also reviewed. Culture and histological examination of tissue biopsy specimens remain the mainstay of diagnosis, but molecular methods are increasingly being used. As NAM frequently disseminate, blood cultures and skin examination with biopsy of any suspicious lesions are critically important. Treatment requires a multidisciplinary approach with surgical debridement as a central component. Other management strategies include control of the underlying disease/predisposing factors, augmentation of the host response and the reduction of immunosuppression. Carefully selected antifungal therapy, guided by susceptibility testing, is critical to cure. We also outline novel antifungal agents still in clinical trial which offer substantial potential for improved outcomes in the future. Paediatric recommendations follow those of adults. Ongoing epidemiological research, improvement in diagnostics and the development of new antifungal agents will continue to improve the poor outcomes that have been traditionally associated with IFD due to NAM.


Assuntos
Hematologia , Infecções Fúngicas Invasivas , Adulto , Antifúngicos/uso terapêutico , Aspergillus , Criança , Fungos , Humanos , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/terapia
4.
Front Cell Infect Microbiol ; 11: 761596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35024355

RESUMO

Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and ß-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on "Scedosporium/Pseudallescheria Infections" and "Fungal Respiratory Infections in Cystic Fibrosis".


Assuntos
Scedosporium , Austrália/epidemiologia , Variação Genética , Humanos , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo Genético , Scedosporium/genética
5.
IMA Fungus ; 11: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714773

RESUMO

True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.

6.
J Vet Diagn Invest ; 31(6): 828-835, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31551015

RESUMO

Cryptococcosis, caused by the Cryptococcus gattii and C. neoformans species complexes, is an environmentally acquired mycosis affecting a broad range of host species. Among 9 communally housed ferrets, a 5-y-old castrated male ferret domiciled in an outdoor enclosure in Sydney, Australia was diagnosed with sinonasal cryptococcosis. Clinical signs resolved during 18 mo of itraconazole therapy, but the ferret was eventually euthanized because of splenic hemangiosarcoma. At postmortem, microscopic foci of persistent cryptococcosis were detected. The diagnosis raised concerns that the owners and other ferrets were exposed to a common environmental source of infection, thus prompting an investigation. Soil samples, swabs of a hollow eucalypt log (used for behavioral enrichment), and nasal swabs from 8 asymptomatic ferrets were collected. Nasal exudate (obtained at diagnosis) and tissues (collected at postmortem) were available from the clinical case. Bird seed agar culture resulted in a heavy growth of Cryptococcus spp. from one environmental site (the log), one nasal swab, and nasal exudate and tissues from the clinical case. All other samples were culture-negative. Sub-cultured isolates from the log were a mixture of C. gattii molecular type VGI and C. neoformans molecular type VNI. Ferret isolates were a similar mixture of C. gattii VGI (all disease isolates) and C. neoformans VNI (nasal-colonizing isolate). Multilocus sequence typing further revealed the ferret isolates as identical to environmental isolates collected from the log, confirming the log as the source of clinical disease and nasal colonization. The log was removed to prevent further exposure to a high environmental load of Cryptococcus spp.


Assuntos
Antifúngicos/uso terapêutico , Criptococose/veterinária , Furões , Itraconazol/uso terapêutico , Doenças dos Seios Paranasais/veterinária , Animais , Criptococose/diagnóstico , Criptococose/tratamento farmacológico , Cryptococcus gattii/isolamento & purificação , Cryptococcus neoformans/isolamento & purificação , Masculino , New South Wales , Doenças dos Seios Paranasais/diagnóstico , Doenças dos Seios Paranasais/tratamento farmacológico
7.
Can J Microbiol ; 65(11): 814-822, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31265796

RESUMO

Peptidases secreted by a clinical high-virulence Scedosporium aurantiacum isolate (strain WM 06.482; CBS 136046) under normoxic and hypoxic conditions were separated via size-exclusion chromatography, and peptidase activities present in each fraction were determined using class-specific substrates. The fractions demonstrating peptidase activity were assessed for their effects on the attachment and viability of A549 human lung epithelial cells in vitro. Of the peptidases detected in the size-exclusion chromatography fractions, the elastase-like peptidase reduced cell viability, the chymotrypsin-like peptidase was associated with cell detachment, and the cysteine peptidases were able to abolish both cell attachment and viability. The loss of cell viability and attachment became more prominent with an increase in the peptidase activity and could also be specifically prevented by addition of class-specific peptidase inhibitors. Our findings indicate that peptidases secreted by S. aurantiacum can breach the human alveolar epithelial cell barrier and, thus, may have a role in the pathobiology of the organism.


Assuntos
Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Micoses/microbiologia , Peptídeo Hidrolases/metabolismo , Scedosporium/enzimologia , Transporte Biológico , Proteínas Fúngicas/isolamento & purificação , Humanos , Peptídeo Hidrolases/isolamento & purificação , Scedosporium/metabolismo , Scedosporium/patogenicidade , Virulência
8.
Sci Rep ; 9(1): 5035, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903006

RESUMO

Scedosporium fungi are found in various natural and host-associated environments, including the lungs of cystic fibrosis patients. However, their role in infection development remains underexplored. Here the attachment of conidia of a virulent S. aurantiacum strain WM 06.482 onto the human lung epithelial A549 cells in vitro was visualized using microscopy to examine the initial steps of infection. We showed that 75-80% of fungal conidia were bound to the A549 cells within four hours of co-incubation, and started to produce germ tubes. The germinating conidia seemed to invade the cells through the intercellular space, no intracellular uptake of fungal conidia by the airway epithelial cells after conidial attachment. Transcriptomic analysis of the A549 cells revealed that the up-regulated genes were mainly associated with cell repair and inflammatory processes indicating a protective response against S. aurantiacum infection. Network analysis of the differentially expressed genes showed activation of the innate immune system (NF-kB pathway) leading to the release of pro-inflammatory cytokines. We believe this is the first report showing the transcriptomic response of human alveolar epithelial cells exposed to S. aurantiacum conidia paving a way for better understanding of the mechanism of the infection process.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Scedosporium/crescimento & desenvolvimento , Células A549 , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Scedosporium/patogenicidade , Scedosporium/ultraestrutura , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/ultraestrutura , Virulência
9.
J Cyst Fibros ; 18(2): 212-220, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30348610
10.
Med Mycol ; 57(7): 813-824, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566653

RESUMO

The genus Pneumocystis comprises potential pathogens that reside normally in the lungs of a wide range of mammals. Although they generally behave as transient or permanent commensals, they can occasionally cause life-threatening pneumonia (Pneumocystis pneumonia; PCP) in immunosuppressed individuals. Several decades ago, the presence of Pneumocystis morphotypes (trophic forms and cysts) was described in the lungs of normal cats and cats with experimentally induced symptomatic PCP (after immunosuppression by corticosteroids); yet to date spontaneous or drug-induced PCP has not been described in the clinical feline literature, despite immunosuppression of cats by long-standing retrovirus infections or after kidney transplantation. In this study, we describe the presence of Pneumocystis DNA in the lungs of normal cats (that died of various unrelated causes; n = 84) using polymerase chain reactions (PCRs) targeting the mitochondrial small and large subunit ribosomal RNA gene (mtSSU rRNA and mtLSU rRNA). The presence of Pneumocystis DNA was confirmed by sequencing in 24/84 (29%) cats, with evidence of two different sequence types (or lineages). Phylogenetically, lineage1 (L1; 19 cats) and lineage 2 (L2; 5 cats) formed separate clades, clustering with Pneumocystis from domestic pigs (L1) and carnivores (L2), respectively. Results of the present study support the notion that cats can be colonized or subclinically infected by Pneumocystis, without histological evidence of damage to the pulmonary parenchyma referable to pneumocystosis. Pneumocystis seems most likely an innocuous pathogen of cats' lungs, but its possible role in the exacerbation of chronic pulmonary disorders or viral/bacterial coinfections should be considered further in a clinical setting.


Assuntos
Doenças do Gato/diagnóstico , DNA Fúngico/isolamento & purificação , Pulmão/microbiologia , Pneumocystis/isolamento & purificação , Pneumonia por Pneumocystis/veterinária , Animais , Doenças do Gato/microbiologia , Gatos , Feminino , Masculino , Filogenia , Pneumocystis/genética , Pneumonia por Pneumocystis/diagnóstico , RNA Mitocondrial/isolamento & purificação , RNA Ribossômico/isolamento & purificação
11.
Front Microbiol ; 9: 2946, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559734

RESUMO

Candida glabrata is a pathogen with reduced susceptibility to azoles and echinocandins. Analysis by traditional multilocus sequence typing (MLST) has recognized an increasing number of sequence types (STs), which vary with geography. Little is known about STs of C. glabrata in Australia. Here, we utilized whole genome sequencing (WGS) to study the genetic diversity of 51 Australian C. glabrata isolates and sought associations between STs over two time periods (2002-2004, 2010-2017), and with susceptibility to fluconazole by principal component analysis (PCA). Antifungal susceptibility was determined using Sensititre YeastOneTM Y010 methodology and WGS performed on the NextSeq 500 platform (Illumina) with in silico MLST STs inferred by WGS data. Single nucleotide polymorphisms (SNPs) in genes linked to echinocandin, azole and 5-fluorocytosine resistance were analyzed. Of 51 isolates, WGS identified 18 distinct STs including four novel STs (ST123, ST124, ST126, and ST127). Four STs accounted for 49% of isolates (ST3, 15.7%; ST83, 13.7%; ST7, 9.8%; ST26, 9.8%). Split-tree network analysis resolved isolates to terminal branches; many of these comprised multiple isolates from disparate geographic settings but four branches contained Australian isolates only. ST3 isolates were common in Europe, United States and now Australia, whilst ST8 and ST19, relatively frequent in the United States, were rare/absent amongst our isolates. There was no association between ST distribution (genomic similarity) and the two time periods or with fluconazole susceptibility. WGS identified mutations in the FKS1 (S629P) and FKS2 (S663P) genes in three, and one, echinocandin-resistant isolate(s), respectively. Both mutations confer phenotypic drug resistance. Twenty-five percent (13/51) of isolates were fluconazole-resistant (MIC ≥ 64 µg/ml) of which 9 (18%) had non wild-type MICs to voriconazole and posaconazole. Multiple SNPs were present in genes linked to azole resistance such as CgPDR1 and CgCDR1, as well as several in MSH2; however, SNPs occurred in both azole-susceptible and azole-resistant isolates. Although no particular SNP in these genes was definitively associated with resistance, azole-resistant/non-wild type isolates had a propensity to harbor SNPs resulting in amino acid substitutions in Pdr1 beyond the first 250 amino acid positions. The presence of SNPs may be markers of STs. Our study shows the value of WGS for high-resolution sequence typing of C. glabrata, discovery of novel STs and potential to monitor trends in genetic diversity. WGS assessment for echinocandin resistance augments phenotypic susceptibility testing.

12.
Microbiol Res ; 216: 23-29, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269853

RESUMO

One of the micro-environmental stresses that fungal pathogens, such as Scedosporium aurantiacum, colonising human lungs encounter in vivo is hypoxia, or deficiency of oxygen. In this work, we studied the impacts of a hypoxic micro-environment (oxygen levels ≤1%) on the growth of a clinical S. aurantiacum isolate (WM 06.482; CBS 136046) and an environmental strain (S. aurantiacum WM 10.136; CBS 136049) on mucin-containing synthetic cystic fibrosis sputum medium. Additionally, profiles of secreted proteases were compared between the two isolates and protease activity was assessed using class-specific substrates and inhibitors. Overall, both isolates grew slower and produced less biomass under hypoxia compared to normoxic conditions. The pH of the medium decreased to 4.0 over the cultivation time, indicating that S. aurantiacum released acidic compounds into the medium. Accordingly, secreted proteases of the two isolates were dominated by acidic proteases, including aspartic and cysteine proteases, with optimal protease activity at pH 4.0 and 6.0 respectively. The clinical isolate produced higher aspartic and cysteine protease activities. Conversely, all serine proteases, including elastase-like, trypsin-like, chymotrypsin-like and subtilisin-like proteases had higher activities in the environmental isolate. Sequence similarities to 13 secreted proteases were identified by mass spectrometry (MS) by searching against other fungal proteases in the NCBI database. Results from MS analysis were consistent with those from activity assays. The clinical highly-virulent, and environmental low-virulence S. aurantiacum isolates responded differently to hypoxia in terms of the type of proteases secreted, which may reflect their different virulence properties.


Assuntos
Hipóxia , Micoses/microbiologia , Peptídeo Hidrolases/metabolismo , Scedosporium/enzimologia , Scedosporium/crescimento & desenvolvimento , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Biomassa , Fibrose Cística/microbiologia , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Infecções Oportunistas , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Scedosporium/patogenicidade , Serina Proteases/química , Serina Proteases/metabolismo , Especificidade por Substrato , Virulência
13.
Artigo em Inglês | MEDLINE | ID: mdl-29891611

RESUMO

Scedosporium spp. cause infections (scedosporiosis) in both immunocompetent and immunocompromised individuals and may persistently colonize the respiratory tract in patients with cystic fibrosis (CF). They are less susceptible against azoles than are other molds, such as Aspergillus spp., suggesting the presence of resistance mechanisms. It can be hypothesized that the decreased susceptibility of Scedosporium spp. to azoles is also CYP51 dependent. Analysis of the Scedosporium apiospermum and Scedosporiumaurantiacum genomes revealed one CYP51 gene encoding the 14-α-lanosterol demethylase. This gene from 159 clinical or environmental Scedosporium isolates and three Lomentospora prolificans isolates has been sequenced and analyzed. The Scedosporium CYP51 protein clustered with the group of known CYP51B orthologues and showed species-specific polymorphisms. A tandem repeat in the 5' upstream region of Scedosporium CYP51 like that in Aspergillus fumigatus could not be detected. Species-specific amino acid alterations in CYP51 of Scedosporium boydii, Scedosporiumellipsoideum, Scedosporium dehoogii, and Scedosporiumminutisporum isolates were located at positions that have not been described as having an impact on azole susceptibility. In contrast, two of the three Sapiospermum-specific amino acid changes (Y136F and G464S) corresponded to respective mutations in A. fumigatus CYP51A at amino acid positions 121 and 448 (Y121F and G448S, respectively) that had been linked to azole resistance.


Assuntos
Scedosporium/efeitos dos fármacos , Scedosporium/genética , Esterol 14-Desmetilase/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Mutação
14.
Med Mycol ; 56(suppl_1): 42-59, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538733

RESUMO

Cystic fibrosis (CF) is the major genetic inherited disease in Caucasian populations. The respiratory tract of CF patients displays a sticky viscous mucus, which allows for the entrapment of airborne bacteria and fungal spores and provides a suitable environment for growth of microorganisms, including numerous yeast and filamentous fungal species. As a consequence, respiratory infections are the major cause of morbidity and mortality in this clinical context. Although bacteria remain the most common agents of these infections, fungal respiratory infections have emerged as an important cause of disease. Therefore, the International Society for Human and Animal Mycology (ISHAM) has launched a working group on Fungal respiratory infections in Cystic Fibrosis (Fri-CF) in October 2006, which was subsequently approved by the European Confederation of Medical Mycology (ECMM). Meetings of this working group, comprising both clinicians and mycologists involved in the follow-up of CF patients, as well as basic scientists interested in the fungal species involved, provided the opportunity to initiate collaborative works aimed to improve our knowledge on these infections to assist clinicians in patient management. The current review highlights the outcomes of some of these collaborative works in clinical surveillance, pathogenesis and treatment, giving special emphasis to standardization of culture procedures, improvement of species identification methods including the development of nonculture-based diagnostic methods, microbiome studies and identification of new biological markers, and the description of genotyping studies aiming to differentiate transient carriage and chronic colonization of the airways. The review also reports on the breakthrough in sequencing the genomes of the main Scedosporium species as basis for a better understanding of the pathogenic mechanisms of these fungi, and discusses treatment options of infections caused by multidrug resistant microorganisms, such as Scedosporium and Lomentospora species and members of the Rasamsonia argillacea species complex.


Assuntos
Fibrose Cística/complicações , Fungos , Micoses/microbiologia , Infecções Respiratórias/microbiologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica Múltipla , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/genética , Fungos/patogenicidade , Genômica , Humanos , Técnicas Microbiológicas , Micoses/diagnóstico , Micoses/tratamento farmacológico , Micoses/etiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/etiologia , Scedosporium/genética
15.
Med Mycol ; 56(suppl_1): 102-125, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538735

RESUMO

Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.


Assuntos
Antifúngicos/uso terapêutico , Ascomicetos/fisiologia , Farmacorresistência Fúngica Múltipla/genética , Micoses/microbiologia , Scedosporium/fisiologia , Antifúngicos/farmacologia , Ascomicetos/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Terapia Combinada , Ecologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hospedeiro Imunocomprometido , Tipagem Molecular , Micoses/diagnóstico , Micoses/patologia , Micoses/terapia , Infecções Oportunistas/diagnóstico , Infecções Oportunistas/microbiologia , Infecções Oportunistas/patologia , Infecções Oportunistas/terapia , Scedosporium/classificação , Scedosporium/efeitos dos fármacos , Scedosporium/genética , Procedimentos Cirúrgicos Operatórios , Fatores de Virulência
16.
Mycopathologia ; 183(1): 251-261, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28512704

RESUMO

In vitro bacterial-fungal interaction studies in cystic fibrosis (CF) have mainly focused on interactions between bacteria and Candida. Here we investigated the effect of Pseudomonas aeruginosa on the growth of Scedosporium/Lomentospora spp. Standard suspensions of P. aeruginosa (16 non-mucoid and nine mucoid isolates) were dropped onto paper disks, placed on lawns of Lomentospora prolificans (formerly Scedosporium prolificans) strain WM 14.140 or Scedosporium aurantiacum strain WM 11.78 on solid agar. The median inhibitory activity (mIz) was calculated for each fungal-bacterial combination. As a group, mIz values for non-mucoid phenotype P. aeruginosa strains were significantly lower than those for mucoid strains (P < 0.001); 14/16 (87.5%) non-mucoid strains had mIz <1.0 against both fungi versus just 3/9 mucoid strains (33.4%) (P = 0.01). One non-mucoid (PA14) and one mucoid (CIDMLS-PA-28) P. aeruginosa strain effecting inhibition were selected for further studies. Inhibition of both L. prolificans and S. aurantiacum by these strains was confirmed using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) reduction assay. Following incubation with XTT, inhibition of fungal growth was determined as the ratio of absorbance in liquid culture with Pseudomonas to that in control fungal cultures. An absorbance ratio of <1.0 consistent with bacterial inhibition of fungal growth was observed for all four P. aeruginosa-fungal combinations (P < 0.05). Fluorescence microscopy, subsequent to co-culture of either fungal isolate with P. aeruginosa strain PA14 or CIDMLS-PA-28 revealed poorly formed hyphae, compared with control fungal cultures. P. aeruginosa inhibits growth of L. prolificans and S. aurantiacum in vitro, with non-mucoid strains more commonly having an inhibitory effect. As P. aeruginosa undergoes phenotype transitions from non-mucoid to the mucoid form with progression of CF lung disease, this balance may influence the appearance of Scedosporium fungi in the airways.


Assuntos
Antibiose , Ascomicetos/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Formazans/análise , Técnicas Microbiológicas , Microscopia de Fluorescência , Coloração e Rotulagem/métodos
17.
Mycopathologia ; 183(1): 89-100, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28589247

RESUMO

Study of the clinical significance of fungal colonization/infection in the airways of cystic fibrosis (CF) patients, especially by filamentous fungi, is challenged by the absence of standardized methodology for the detection and identification of an ever-broadening range of fungal pathogens. Culture-based methods remain the cornerstone diagnostic approaches, but current methods used in many clinical laboratories are insensitive and unstandardized, rendering comparative studies unfeasible. Guidelines for standardized processing of respiratory specimens and for their culture are urgently needed and should include recommendations for specific processing procedures, inoculum density, culture media, incubation temperature and duration of culture. Molecular techniques to detect fungi directly from clinical specimens include panfungal PCR assays, multiplex or pathogen-directed assays, real-time PCR, isothermal methods and probe-based assays. In general, these are used to complement culture. Fungal identification by DNA sequencing methods is often required to identify cultured isolates, but matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is increasingly used as an alternative to DNA sequencing. Genotyping of isolates is undertaken to investigate relatedness between isolates, to pinpoint the infection source and to study the population structure. Methods range from PCR fingerprinting and amplified fragment length polymorphism analysis, to short tandem repeat typing, multilocus sequencing typing (MLST) and whole genome sequencing (WGS). MLST is the current preferred method, whilst WGS offers best case resolution but currently is understudied.


Assuntos
Técnicas de Laboratório Clínico/métodos , Fibrose Cística/complicações , Pneumopatias Fúngicas/diagnóstico , Técnicas de Laboratório Clínico/normas , Técnicas de Genotipagem/métodos , Humanos , Técnicas Microbiológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica/métodos , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
18.
PLoS One ; 12(5): e0176304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486489

RESUMO

Cryptococcal meningitis (CM) is a life-threatening infection in HIV-infected patients, especially in resource-limited settings. Cytokine patterns in the cerebrospinal fluid (CSF) and sera may be related to clinical outcomes. This study aimed to evaluate cytokine patterns in the CSF and sera of HIV-infected patients with CM as well as the cytokines produced by peripheral blood mononuclear cells (PBMCs) when stimulated with LPS and cryptococcal GXM. CSF and serum levels of IL-2, IL-4, IL-8, IL-10, IL-12p40, IL-17A, INF-γ, TNF-α and CXCL-10 were measured in HIV-infected patients with CM (CM+ HIV+) at various time points. Cytokine levels were evaluated in the PBMC culture supernatants and the baseline values were compared to those of HIV-infected patients without CM (CM- HIV+) and healthy controls (CM- HIV-). CSF cytokine levels at admission (n = 33) were higher than levels among the 23 survivors at week 2, but statistically significant differences were observed for IL-8 and IFN-γ (p<0.05). CSF and serum levels of IL-4 and IL-17A at week 10 (n = 16) were lower than the baseline values, whereas IL-2 levels increased compared to week 2 (p<0.05). At week 16 (n = 15), CSF and serum levels of IL-4, IL-10 and CXCL-10 were decreased compared to the baseline values (p<0.05). PBMCs from CM- HIV- individuals produced significantly higher levels of proinflammatory cytokines in response to LPS, with the exception of TNF-α, which showed higher levels among CM+ HIV+ patients. The PBMCs of CM patients produced higher levels of IL-4 than those of CM- HIV- patients in response to GXM stimulation, and levels progressively decreased during treatment (p<0.05). Then, a progressive shift in cytokine expression favoring a Th1 pattern was observed, which is crucial in controlling cryptococcal infection. A better understanding of the protective immune response against Cryptococcus neoformans will help to develop novel strategies to improve the outcomes of patients with cryptococcosis.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/sangue , Citocinas/sangue , Meningite Criptocócica/complicações , Contagem de Linfócito CD4 , Humanos , Meningite Criptocócica/sangue , Estudos Prospectivos , Carga Viral
19.
Med Mycol ; 55(8): 828-842, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339756

RESUMO

Pneumocystis pneumonia (PCP) is a life-threatening fungal disease that can occur in dogs. The aim of this study was to provide a preliminary genetic characterisation of Pneumocystis carinii f.sp.'canis' (P. canis) in dogs and thereby develop a reliable molecular protocol to definitively diagnose canine PCP. We investigated P. canis in a variety of lung specimens from dogs with confirmed or strongly suspected PCP (Group 1, n = 16), dogs with non-PCP lower respiratory tract problems (Group 2, n = 65) and dogs not suspected of having PCP or other lower respiratory diseases (Group 3, n = 11). Presence of Pneumocystis DNA was determined by nested PCR of the large and small mitochondrial subunit rRNA loci and by a real-time quantitative polymerase chain reaction (qPCR) assay developed using a new set of primers. Molecular results were correlated with the presence of Pneumocystis morphotypes detected in cytological/histological preparations. Pneumocystis DNA was amplified from 13/16 PCP-suspected dogs (Group 1) and from 4/76 dogs of control Groups 2 and 3 (combined). The latter four dogs were thought to have been colonized by P. canis. Comparison of CT values in 'infected' versus 'colonized' dogs was consistent with this notion, with a distinct difference in molecular burden between groups (CT ≤ 26 versus CT range (26

Assuntos
Doenças do Cão/diagnóstico , Doenças do Cão/microbiologia , Pneumocystis carinii/genética , Pneumonia por Pneumocystis/veterinária , Animais , Líquido da Lavagem Broncoalveolar/microbiologia , Primers do DNA , DNA Fúngico/genética , Doenças do Cão/patologia , Cães , Pulmão/microbiologia , Técnicas de Tipagem Micológica/veterinária , Filogenia , Pneumocystis carinii/classificação , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/patologia , RNA/genética , RNA Mitocondrial , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
20.
Cytotherapy ; 18(1): 65-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552765

RESUMO

BACKGROUND AIMS: Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. METHODS: Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. RESULTS: Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. CONCLUSIONS: We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically.


Assuntos
Aspergillus/imunologia , Candida/imunologia , Reações Cruzadas/imunologia , Ativação Linfocitária/imunologia , Rhizopus/imunologia , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos de Fungos/imunologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Hifas/imunologia , Contagem de Linfócitos , Fenótipo , Especificidade da Espécie , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA